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The Coriolis force 𝐹⃗𝐶𝑜𝑟 = 2𝑚𝑟̇ × Ω��⃗  depends on the state of motion of the object.  In fact 
it resembles the force on a charged particle in a magnetic field.  The ‘charge’ is 2𝑚 and the 
‘magnetic field’ is the angular velocity vector Ω��⃗ .  The particle will be deflected as it travels 
through this ‘field’.  In the northern hemisphere the deflection is to the right, while in the 
southern hemisphere it is in the opposite direction because Ω��⃗  has a substantial component 
into the ground (hence the phrase ‘down under’).  The magnitude of the Coriolis force for an 
object on the surface of the earth moving at 50 m/s is quite small, resulting in an acceleration 
of at most 0.007 m/s2.  We did a demonstration showing the deflection of a stream of water 
under the influence of the Coriolis force. 

We next considered the motion of the Foucault pendulum.  The demonstration showed 
that the pendulum moves in a fixed plane, as seen from an inertial reference frame.  
However, in a rotating reference frame, the pendulum appears to move in a series of planes 
that rotate clockwise, as seen from above.  The pendulum is made of a light wire of length L  
supporting a bob of mass m.  The equation of motion of the bob as seen in the non-inertial 
frame is 𝑚𝑟̈ = 𝐹⃗𝑛𝑒𝑡 + 2𝑚𝑟̇ × Ω��⃗ + 𝑚�Ω��⃗ × 𝑟� × Ω��⃗ , where the net force identified from an 
inertial reference frame is the vector sum of tension in the wire and gravity: 𝐹⃗𝑛𝑒𝑡 = 𝑇�⃗ + 𝑚𝑔⃗0.  
This is the bare gravity force that points toward the center of the earth.  Last time we saw that 
bare gravity can be combined with the centrifugal force and re-named effective gravity: 
𝑔⃗ = 𝑔⃗0 + Ω2𝑅 sin𝜃 𝜌�.     We designate “up” or the +z-direction to be the direction away 
from 𝑔⃗, and y to be the “north” direction, and x to be the “east” direction.  In this way, the 
angular velocity vector for the earth Ω��⃗  points somewhere in the y-z plane. 

The z-motion of the bob is fairly simple, essentially reducing to the statement that 
T ≅ mg.  The tension in the horizontal xy-plane is T𝑥 = −𝑚𝑔𝑥/𝐿, and T𝑦 = −𝑚𝑔𝑦/𝐿.  The 
Coriolis force is found from the cross product 2𝑚𝑟̇ × Ω��⃗ .  We write 𝑟̇ = (𝑥̇, 𝑦̇, 𝑧̇) and Ω��⃗ =
(0,Ω sin𝜃 ,Ω cos 𝜃).  After carrying out the cross product and putting the results into the 
equation of motion, broken down into components, we get: 𝑚𝑥̈ = −𝑚𝑔𝑥

𝐿
+ 0 +

2𝑚(𝑦̇Ω cos𝜃 − 𝑧̇Ω sin 𝜃), and 𝑚𝑦̈ = −𝑚𝑔𝑦
𝐿

+ 0 − 2𝑚𝑥̇Ω cos𝜃.   We shall drop the 𝑧̇ term 
in the x-equation because it is the product of two small velocities, define the constants 
𝜔0
2 ≡ 𝑔/𝐿, and Ω𝑧 ≡ Ωcos 𝜃, to get two coupled equations of motion: 

  𝑥̈ − 2𝑦̇Ω𝑧 + 𝜔0
2𝑥 = 0 

  𝑦̈ + 2𝑥̇Ω𝑧 + 𝜔0
2𝑦 = 0 

http://www.physics.umd.edu/deptinfo/facilities/lecdem/services/demos/demosd5/d5-12.htm
http://www.physics.umd.edu/courses/Phys410/Anlage_Spring13/Foucault%20Pendulum.pdf
http://www.physics.umd.edu/deptinfo/facilities/lecdem/services/demos/demosd5/d5-13.htm
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The first and third terms alone would give un-coupled simple harmonic motion in the xy-
plane.  The coupling terms look like a form of dissipation (of the form 𝐹𝑑𝑖𝑠 = −𝑏𝑣) but in 
fact they represent a coupling of energy from one direction of motion to the other.  The 
energy in the oscillations sloshes back and forth between x and y. 

 


